In reality, such consumer expectations aren’t met, which thereby exposes a grey area for businesses to take advantage of. Statistically, 93% of businesses do not respond to consumer grievances within the first 5 minutes. This delayed response is directly responsible for a 400% decrease in lead generation. Over time this turns into a surmounting problem for both small and large organizations as they may be overwhelmed with customer grievances or may fail to maintain an online presence 24/7.
Chatbots – also known as “conversational agents” – are software applications that mimic written or spoken human speech for the purposes of simulating a conversation or interaction with a real person. There are two primary ways chatbots are offered to visitors: via web-based applications or standalone apps. Today, chatbots are used most commonly in the customer service space, assuming roles traditionally performed by living, breathing human beings such as Tier-1 support operatives and customer satisfaction reps.
They have an intuitive visual interface for those without a coding background, but developers will like the editable front-end and customization options. While you can build a bot for free, a lot of the more complex (and interesting) tools are only available with Chatfuel Pro accounts. Either way, it might be helpful to know that Chatfuel integrates with Hootsuite Inbox using the Facebook Messenger handover protocol.
This form of artificial intelligence was first developed by MIT Professor Joseph Weizenbaum in the 1960’s and named ELIZA. It wasn’t until 2011, when chatbots had a resurgence with the inception of WeChat in China. Customers could create chatbots on this platform and interact with one another seamlessly. In 2016, Facebook introduced its own chatbots which paved the way for this form of artificial intelligence to enter and interact with mainstream media consumption.
The term "ChatterBot" was originally coined by Michael Mauldin (creator of the first Verbot, Julia) in 1994 to describe these conversational programs.[3] Today, most chatbots are accessed via virtual assistants such as Google Assistant and Amazon Alexa, via messaging apps such as Facebook Messenger or WeChat, or via individual organizations' apps and websites.[4][5] Chatbots can be classified into usage categories such as conversational commerce (e-commerce via chat), analytics, communication, customer support, design, developer tools, education, entertainment, finance, food, games, health, HR, marketing, news, personal, productivity, shopping, social, sports, travel and utilities.[6]
Enter Roof Ai, a chatbot that helps real-estate marketers to automate interacting with potential leads and lead assignment via social media. The bot identifies potential leads via Facebook, then responds almost instantaneously in a friendly, helpful, and conversational tone that closely resembles that of a real person. Based on user input, Roof Ai prompts potential leads to provide a little more information, before automatically assigning the lead to a sales agent.
HealthTap helps you get answers for your health queries from physicians around the world, for free. You can browse through and read answers for similar queries as yours. Over 100,000 physicians with different specialities regularly review and post answers to the questions asked on HealthTap. So, the next time you’re down with headache after texting the entire night on Messenger, you know who to ping next.
The classic historic early chatbots are ELIZA (1966) and PARRY (1972).[11][12][13][14] More recent notable programs include A.L.I.C.E., Jabberwacky and D.U.D.E (Agence Nationale de la Recherche and CNRS 2006). While ELIZA and PARRY were used exclusively to simulate typed conversation, many chatbots now include functional features such as games and web searching abilities. In 1984, a book called The Policeman's Beard is Half Constructed was published, allegedly written by the chatbot Racter (though the program as released would not have been capable of doing so).[15]

ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
Chatbots are certainly the quickest and most cost-effective way to be able to connect with the largest group of audience available on a single platform viz Facebook. Higher engagement rate than emails this trend is here to stay for a long time if not forever. Good for you, now that you have a proper list of tools that can be used to build chatbots in a snap of a finger. It’s no more a rocket science formula to implement them and let the results surprise you for yourself.

The word robot is derived from the Czech noun robota meaning “labor”, and is an accomplishment of the cubist painter and writer Josef Capek, older brother of novelist and playwright Karel Capek. The word robot first appeared in 1920 in the Karel Capek’s play “RUR” (“Rossum’s Universal Robots”) and since then this play popularized the word invented by playwright’s brother.[3]
The idea was to permit Tay to “learn” about the nuances of human conversation by monitoring and interacting with real people online. Unfortunately, it didn’t take long for Tay to figure out that Twitter is a towering garbage-fire of awfulness, which resulted in the Twitter bot claiming that “Hitler did nothing wrong,” using a wide range of colorful expletives, and encouraging casual drug use. While some of Tay’s tweets were “original,” in that Tay composed them itself, many were actually the result of the bot’s “repeat back to me” function, meaning users could literally make the poor bot say whatever disgusting remarks they wanted. 
Interestingly, the as-yet unnamed conversational agent is currently an open-source project, meaning that anyone can contribute to the development of the bot’s codebase. The project is still in its earlier stages, but has great potential to help scientists, researchers, and care teams better understand how Alzheimer’s disease affects the brain. A Russian version of the bot is already available, and an English version is expected at some point this year.
Automated customer support with smart businesses chatbots. ActiveChat is an omnichannel chatbot platform for natural language customer support. Using this platform you can seamlessly integrate with CRM and CMS and make more sales with e-commerce integrations. “We provide you with everything you need to build great chatbots. Conversational design with Visual Bot Architect is easy as building with LEGO blocks”, claims ActiveChat.
Ideally used for customer service functions Botsify is another Facebook Messenger Bot Builder tool that can help boost your brand. A noteworthy feature would be its website integration (helping you get more cross-platform support out of your chatbot. Like other platforms we discussed so far Botsify also has an easy drag-and-drop template designer. Also, it is trusted by names including Apple and Shazam.
Automated customer support with smart businesses chatbots. ActiveChat is an omnichannel chatbot platform for natural language customer support. Using this platform you can seamlessly integrate with CRM and CMS and make more sales with e-commerce integrations. “We provide you with everything you need to build great chatbots. Conversational design with Visual Bot Architect is easy as building with LEGO blocks”, claims ActiveChat.

This chatbot aims to make medical diagnoses faster, easier, and more transparent for both patients and physicians – think of it like an intelligent version of WebMD that you can talk to. MedWhat is powered by a sophisticated machine learning system that offers increasingly accurate responses to user questions based on behaviors that it “learns” by interacting with human beings.
Despite the fact that ALICE relies on such an old codebase, the bot offers users a remarkably accurate conversational experience. Of course, no bot is perfect, especially one that’s old enough to legally drink in the U.S. if only it had a physical form. ALICE, like many contemporary bots, struggles with the nuances of some questions and returns a mixture of inadvertently postmodern answers and statements that suggest ALICE has greater self-awareness for which we might give the agent credit.
Earlier, I made a rather lazy joke with a reference to the Terminator movie franchise, in which an artificial intelligence system known as Skynet becomes self-aware and identifies the human race as the greatest threat to its own survival, triggering a global nuclear war by preemptively launching the missiles under its command at cities around the world. (If by some miracle you haven’t seen any of the Terminator movies, the first two are excellent but I’d strongly advise steering clear of later entries in the franchise.)
Bots are also used to buy up good seats for concerts, particularly by ticket brokers who resell the tickets.[12] Bots are employed against entertainment event-ticketing sites. The bots are used by ticket brokers to unfairly obtain the best seats for themselves while depriving the general public of also having a chance to obtain the good seats. The bot runs through the purchase process and obtains better seats by pulling as many seats back as it can.
This is where most applications of NLP struggle, and not just chatbots. Any system or application that relies upon a machine’s ability to parse human speech is likely to struggle with the complexities inherent in elements of speech such as metaphors and similes. Despite these considerable limitations, chatbots are becoming increasingly sophisticated, responsive, and more “natural.”
Chatbots are used in a diverse fashion, across all verticals and on many different types of channel, e.g. websites, social messaging, etc. In business their application accelerated rapidly in 2019, leading Van Baker, research vice president at Gartner, to predict that: “By 2020, over 50% of medium to large enterprises will have deployed product chatbots."[17]
Chatbots are used in a diverse fashion, across all verticals and on many different types of channel, e.g. websites, social messaging, etc. In business their application accelerated rapidly in 2019, leading Van Baker, research vice president at Gartner, to predict that: “By 2020, over 50% of medium to large enterprises will have deployed product chatbots."[17]
Enter Roof Ai, a chatbot that helps real-estate marketers to automate interacting with potential leads and lead assignment via social media. The bot identifies potential leads via Facebook, then responds almost instantaneously in a friendly, helpful, and conversational tone that closely resembles that of a real person. Based on user input, Roof Ai prompts potential leads to provide a little more information, before automatically assigning the lead to a sales agent.
One of the key advantages of Roof Ai is that it allows real-estate agents to respond to user queries immediately, regardless of whether a customer service rep or sales agent is available to help. This can have a dramatic impact on conversion rates. It also eliminates potential leads slipping through an agent’s fingers due to missing a Facebook message or failing to respond quickly enough. 
^ "From Russia With Love" (PDF). Retrieved 2007-12-09. Psychologist and Scientific American: Mind contributing editor Robert Epstein reports how he was initially fooled by a chatterbot posing as an attractive girl in a personal ad he answered on a dating website. In the ad, the girl portrayed herself as being in Southern California and then soon revealed, in poor English, that she was actually in Russia. He became suspicious after a couple of months of email exchanges, sent her an email test of gibberish, and she still replied in general terms. The dating website is not named. Scientific American: Mind, October–November 2007, page 16–17, "From Russia With Love: How I got fooled (and somewhat humiliated) by a computer". Also available online.
There are two types of chatbots available: those that function based on rules and those that use artificial intelligence (A.I.). Chatbots that function based on rules are much more limited than those that work with A.I. because they only respond to specific commands. Hence, they require a great deal of programming in order to be an effective tool. Chatbots tools that are powered by artificial intelligence are more dynamic because they respond to language, and don’t require specific commands. They learn continuously from the conversations they have with people and can help fulfill an array of tasks without a monumental amount of programming.
Along with the continued development of our avatars, we are also investigating machine learning and deep learning techniques, and working on the creation of a short term memory for our bots. This will allow humans interacting with our AI to develop genuine human-like relationships with their bot; any personal information that is exchanged will be remembered by the bot and recalled in the correct context at the appropriate time. The bots will get to know their human companion, and utilise this knowledge to form warmer and more personal interactions.
This chatbot aims to make medical diagnoses faster, easier, and more transparent for both patients and physicians – think of it like an intelligent version of WebMD that you can talk to. MedWhat is powered by a sophisticated machine learning system that offers increasingly accurate responses to user questions based on behaviors that it “learns” by interacting with human beings.

According to Richard Wallace, chatbots development faced three phases over the past 60 years. In the beginning, chatbot only simulated human-human conversations, using canned responses based on keywords, and it had almost no intelligence. Second phase of development was strictly associated with the expansion of Internet, thanks to which a chatbot was widely accessed and chatted with thousands of users. Then, the first commercial chatbot developers appeared. The third wave of chatbots development is combined with advanced technologies such as natural language processing, speech synthesis and real-time rendering videos. It comprises of chatbot appearing within web pages, instant messaging, and virtual worlds.

“Beware though, bots have the illusion of simplicity on the front end but there are many hurdles to overcome to create a great experience. So much work to be done. Analytics, flow optimization, keeping up with ever changing platforms that have no standard. For deeper integrations and real commerce like Assist powers, you have error checking, integrations to APIs, routing and escalation to live human support, understanding NLP, no back buttons, no home button, etc etc. We have to unlearn everything we learned the past 20 years to create an amazing experience in this new browser.” — Shane Mac, CEO of Assist


Interestingly, the as-yet unnamed conversational agent is currently an open-source project, meaning that anyone can contribute to the development of the bot’s codebase. The project is still in its earlier stages, but has great potential to help scientists, researchers, and care teams better understand how Alzheimer’s disease affects the brain. A Russian version of the bot is already available, and an English version is expected at some point this year.


Smooch acts as more of a chatbot connector that bridges your business apps, (ex: Slack and ZenDesk) with your everyday messenger apps (ex: Facebook Messenger, WeChat, etc.) It links these two together by sending all of your Messenger chat notifications straight to your business apps, which streamlines your conversations into just one application. In the end, this can result in smoother automated workflows and communications across teams. These same connectors also allow you to create chatbots which will respond to your customer chats…. boom!
The idea was to permit Tay to “learn” about the nuances of human conversation by monitoring and interacting with real people online. Unfortunately, it didn’t take long for Tay to figure out that Twitter is a towering garbage-fire of awfulness, which resulted in the Twitter bot claiming that “Hitler did nothing wrong,” using a wide range of colorful expletives, and encouraging casual drug use. While some of Tay’s tweets were “original,” in that Tay composed them itself, many were actually the result of the bot’s “repeat back to me” function, meaning users could literally make the poor bot say whatever disgusting remarks they wanted. 
According to Richard Wallace, chatbots development faced three phases over the past 60 years. In the beginning, chatbot only simulated human-human conversations, using canned responses based on keywords, and it had almost no intelligence. Second phase of development was strictly associated with the expansion of Internet, thanks to which a chatbot was widely accessed and chatted with thousands of users. Then, the first commercial chatbot developers appeared. The third wave of chatbots development is combined with advanced technologies such as natural language processing, speech synthesis and real-time rendering videos. It comprises of chatbot appearing within web pages, instant messaging, and virtual worlds.
Insidiously and persistently, Facebook is chipping away at other messaging platforms and moving their users to Facebook Messenger. If they keep it up, by the end of 2017 there will be as many people on Messenger (currently 900 million) as Facebook (1.674 billion). But, counterintuitive as that strategy seems (why bifurcate resources on two fronts) that is all part of Mark Zuckerberg’s avec nous le deluge.
Not only is this bot a saviour when it comes to knowing weather updates in a jiffy, it is very quirky with its replies sometimes. If you love having conversations with a bot, Poncho will entertain you pretty well with his witty and personalised replies for some queries. On my query, see how I was informed that the mighty cat-bot herself had DJ’ed in Bengaluru and loved the crowd!
×