The first formal instantiation of a Turing Test for machine intelligence is a Loebner Prize and has been organized since 1991. In a typical setup, there are three areas: the computer area with typically 3-5 computers, each running a stand-alone version (i.e. not connected with the internet) of the participating chatbot, an area for the human judges, typically four persons, and another area for the ‘confederates’, typically 3-5 voluntary humans, dependent on the number of chatbot participants. The human judges, working on their own terminal separated from one another, engage in a conversation with a human or a computer through the terminal, not knowing whether they are connected to a computer or a human. Then, they simply start to interact. The organizing committee requires that conversations are restricted to a single topic. The task for the human judges is to recognize chatbot responses and distinguish them from conversations with humans. If the judges cannot reliably distinguish the chatbot from the human, the chatbot is said to have passed the test.
This is where most applications of NLP struggle, and not just chatbots. Any system or application that relies upon a machine’s ability to parse human speech is likely to struggle with the complexities inherent in elements of speech such as metaphors and similes. Despite these considerable limitations, chatbots are becoming increasingly sophisticated, responsive, and more “natural.”
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
In one particularly striking example of how this rather limited bot has made a major impact, U-Report sent a poll to users in Liberia about whether teachers were coercing students into sex in exchange for better grades. Approximately 86% of the 13,000 Liberian children U-Report polled responded that their teachers were engaged in this despicable practice, which resulted in a collaborative project between UNICEF and Liberia’s Minister of Education to put an end to it.
This is where most applications of NLP struggle, and not just chatbots. Any system or application that relies upon a machine’s ability to parse human speech is likely to struggle with the complexities inherent in elements of speech such as metaphors and similes. Despite these considerable limitations, chatbots are becoming increasingly sophisticated, responsive, and more “natural.”
Reports of political interferences in recent elections, including the 2016 US and 2017 UK general elections,[3] have set the notion of botting being more prevalent because of the ethics that is challenged between the bot’s design and the bot’s designer. According to Emilio Ferrara, a computer scientist from the University of Southern California reporting on Communications of the ACM,[4] the lack of resources available to implement fact-checking and information verification results in the large volumes of false reports and claims made on these bots in social media platforms. In the case of Twitter, most of these bots are programmed with searching filter capabilities that target key words and phrases that reflect in favor and against political agendas and retweet them. While the attention of bots is programmed to spread unverified information throughout the social media platform,[5] it is a challenge that programmers face in the wake of a hostile political climate. Binary functions are designated to the programs and using an Application Program interface embedded in the social media website executes the functions tasked. The Bot Effect is what Ferrera reports as when the socialization of bots and human users creates a vulnerability to the leaking of personal information and polarizing influences outside the ethics of the bot’s code. According to Guillory Kramer in his study, he observes the behavior of emotionally volatile users and the impact the bots have on the users, altering the perception of reality.
An Internet bot, also known as a web robot, robot or simply bot, is a software application that runs automated tasks (scripts) over the Internet.[1] Typically, bots perform tasks that are both simple and structurally repetitive, at a much higher rate than would be possible for a human alone. The largest use of bots is in web spidering (web crawler), in which an automated script fetches, analyzes and files information from web servers at many times the speed of a human. More than half of all web traffic is made up of bots.[2]
Messenger bots might also be able to revolutionize customer support. Facebook has become a popular platform for brands to interact with their customers. Many times customers will take a complaint to a brand’s Facebook page and have it resolved over chat. A Messenger bot makes it easier for you to get help. The quality of the support will vary but for smaller business that rely on Facebook for sales a bot is going to help them stay ‘online’ 24/7.
×