ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.

Develop intelligent, enterprise-grade bots that let you maintain control of your data. Build any type of bot—from a Q&A bot to your own branded virtual assistant. Use a comprehensive, open-source SDK and tools to easily connect your bot across popular channels and devices. Give your bot the ability to speak, listen, and understand your users with native integration of Azure Cognitive Services.
Reports of political interferences in recent elections, including the 2016 US and 2017 UK general elections,[3] have set the notion of botting being more prevalent because of the ethics that is challenged between the bot’s design and the bot’s designer. According to Emilio Ferrara, a computer scientist from the University of Southern California reporting on Communications of the ACM,[4] the lack of resources available to implement fact-checking and information verification results in the large volumes of false reports and claims made on these bots in social media platforms. In the case of Twitter, most of these bots are programmed with searching filter capabilities that target key words and phrases that reflect in favor and against political agendas and retweet them. While the attention of bots is programmed to spread unverified information throughout the social media platform,[5] it is a challenge that programmers face in the wake of a hostile political climate. Binary functions are designated to the programs and using an Application Program interface embedded in the social media website executes the functions tasked. The Bot Effect is what Ferrera reports as when the socialization of bots and human users creates a vulnerability to the leaking of personal information and polarizing influences outside the ethics of the bot’s code. According to Guillory Kramer in his study, he observes the behavior of emotionally volatile users and the impact the bots have on the users, altering the perception of reality.
Sometimes it is hard to discover if a conversational partner on the other end is a real person or a chatbot. In fact, it is getting harder as technology progresses. A well-known way to measure the chatbot intelligence in a more or less objective manner is the so-called Turing Test. This test determines how well a chatbot is capable of appearing like a real person by giving responses indistinguishable from a human’s response.
In the early 90’s, the Turing test, which allows determining the possibility of thinking by computers, was developed. It consists in the following. A person talks to both the person and the computer. The goal is to find out who his interlocutor is — a person or a machine. This test is carried out in our days and many conversational programs have coped with it successfully.
Marketer’s Take: This is a good demonstration of how you can add a gaming dimension to your bots. If you’re a marketer that likes to tell stories, then you can design a choose-your-own adventure bot that educates and sells prospective customers that are following along. There are many twists and turns that can be built into a bot like this, so creative marketers will readily take advantage.

Insidiously and persistently, Facebook is chipping away at other messaging platforms and moving their users to Facebook Messenger. If they keep it up, by the end of 2017 there will be as many people on Messenger (currently 900 million) as Facebook (1.674 billion). But, counterintuitive as that strategy seems (why bifurcate resources on two fronts) that is all part of Mark Zuckerberg’s avec nous le deluge.

Facebook Messenger claims to have recently hit the much coveted ‘billion’ with 1.2 billion users on the platform. Last year, at Facebook’s Developer Conference, F8, the support for bots on Messenger platform was unveiled. And since then, developers from around the world have been working to leverage the next-gen technology. There are more than 100,000 bots available on Messenger today. David Marcus, Messenger’s CEO, states that the number of messages sent between businesses and customers has reached to 2 billion a month.

The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[49] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform [50][30] and IBM Watson.[51][52][53] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
The word bot, in Internet sense, is a short form of robot and originates from XX century. The modern use of the word bot has curious affinities with earlier uses, e.g. “parasitical worm or maggot” (1520s), of unknown origin; and Australian-New Zealand slang “worthless, troublesome person” (World War I -era). The method of minting new slang by clipping the heads off respectable words does not seem to be old or widespread in English. Examples: za from pizza, zels from pretzels, rents from parents, are American English student or teen slang and seem to date back no further than late 1960s.[4]
Chatbots – also known as “conversational agents” – are software applications that mimic written or spoken human speech for the purposes of simulating a conversation or interaction with a real person. There are two primary ways chatbots are offered to visitors: via web-based applications or standalone apps. Today, chatbots are used most commonly in the customer service space, assuming roles traditionally performed by living, breathing human beings such as Tier-1 support operatives and customer satisfaction reps.
Chatbots are certainly the quickest and most cost-effective way to be able to connect with the largest group of audience available on a single platform viz Facebook. Higher engagement rate than emails this trend is here to stay for a long time if not forever. Good for you, now that you have a proper list of tools that can be used to build chatbots in a snap of a finger. It’s no more a rocket science formula to implement them and let the results surprise you for yourself.
in Internet sense, c.2000, short for robot. Its modern use has curious affinities with earlier uses, e.g. "parasitical worm or maggot" (1520s), of unknown origin; and Australian-New Zealand slang "worthless, troublesome person" (World War I-era). The method of minting new slang by clipping the heads off words does not seem to be old or widespread in English. Examples (za from pizza, zels from pretzels, rents from parents) are American English student or teen slang and seem to date back no further than late 1960s.
Messenger Bots are created using the new Messenger API that allows a bot to send and receive messages. The Messenger Bots are essentially chat bots that you can talk to from the Messenger app. The conversations will of course be different than those you have with your Facebook friends. These bots are meant to help you get information for example you can ask the CNN bot to tell you give you the current headline news and it will fetch them for you.
×