This is where most applications of NLP struggle, and not just chatbots. Any system or application that relies upon a machine’s ability to parse human speech is likely to struggle with the complexities inherent in elements of speech such as metaphors and similes. Despite these considerable limitations, chatbots are becoming increasingly sophisticated, responsive, and more “natural.”


Chatbot, when it plays its role as a virtual representative of an enterprise, is widely used by businesses outside of the US, primarily in the UK, The Netherlands, Germany and Australia. Additionally, the usage of this term is quite popular amongst amateur AI enthusiasts willing to spend vast amounts of time on their own intelligent creations (with diverse outcomes).
The idea was to permit Tay to “learn” about the nuances of human conversation by monitoring and interacting with real people online. Unfortunately, it didn’t take long for Tay to figure out that Twitter is a towering garbage-fire of awfulness, which resulted in the Twitter bot claiming that “Hitler did nothing wrong,” using a wide range of colorful expletives, and encouraging casual drug use. While some of Tay’s tweets were “original,” in that Tay composed them itself, many were actually the result of the bot’s “repeat back to me” function, meaning users could literally make the poor bot say whatever disgusting remarks they wanted. 
“Beware though, bots have the illusion of simplicity on the front end but there are many hurdles to overcome to create a great experience. So much work to be done. Analytics, flow optimization, keeping up with ever changing platforms that have no standard. For deeper integrations and real commerce like Assist powers, you have error checking, integrations to APIs, routing and escalation to live human support, understanding NLP, no back buttons, no home button, etc etc. We have to unlearn everything we learned the past 20 years to create an amazing experience in this new browser.” — Shane Mac, CEO of Assist
According to Richard Wallace, chatbots development faced three phases over the past 60 years. In the beginning, chatbot only simulated human-human conversations, using canned responses based on keywords, and it had almost no intelligence. Second phase of development was strictly associated with the expansion of Internet, thanks to which a chatbot was widely accessed and chatted with thousands of users. Then, the first commercial chatbot developers appeared. The third wave of chatbots development is combined with advanced technologies such as natural language processing, speech synthesis and real-time rendering videos. It comprises of chatbot appearing within web pages, instant messaging, and virtual worlds.
Other companies explore ways they can use chatbots internally, for example for Customer Support, Human Resources, or even in Internet-of-Things (IoT) projects. Overstock.com, for one, has reportedly launched a chatbot named Mila to automate certain simple yet time-consuming processes when requesting for a sick leave.[33] Other large companies such as Lloyds Banking Group, Royal Bank of Scotland, Renault and Citroën are now using automated online assistants instead of call centres with humans to provide a first point of contact. A SaaS chatbot business ecosystem has been steadily growing since the F8 Conference when Facebook's Mark Zuckerberg unveiled that Messenger would allow chatbots into the app.[34] In large companies, like in hospitals and aviation organizations, IT architects are designing reference architectures for Intelligent Chatbots that are used to unlock and share knowledge and experience in the organization more efficiently, and reduce the errors in answers from expert service desks significantly.[35] These Intelligent Chatbots make use of all kinds of artificial intelligence like image moderation and natural language understanding (NLU), natural language generation (NLG), machine learning and deep learning.
A malicious use of bots is the coordination and operation of an automated attack on networked computers, such as a denial-of-service attack by a botnet. Internet bots can also be used to commit click fraud and more recently have seen usage around MMORPG games as computer game bots.[citation needed] A spambot is an internet bot that attempts to spam large amounts of content on the Internet, usually adding advertising links. More than 94.2% of websites have experienced a bot attack.[2]
Chatbots are certainly the quickest and most cost-effective way to be able to connect with the largest group of audience available on a single platform viz Facebook. Higher engagement rate than emails this trend is here to stay for a long time if not forever. Good for you, now that you have a proper list of tools that can be used to build chatbots in a snap of a finger. It’s no more a rocket science formula to implement them and let the results surprise you for yourself.
However, web based bots are not as easy to set up as a stand-alone chatbot application. Setting up a web-based chatbot requires at least minimal experience with HTML, JavaScript and Artificial Intelligence Markup Language (AIML). Additionally, any sort of “fancy” features, such as Text To Speech, or an animated avatar, would have to be created and integrated into your chatbot’s page, and certain features, such as voice recognition, are either unavailable, or are severely limited.
Messenger bots might also be able to revolutionize customer support. Facebook has become a popular platform for brands to interact with their customers. Many times customers will take a complaint to a brand’s Facebook page and have it resolved over chat. A Messenger bot makes it easier for you to get help. The quality of the support will vary but for smaller business that rely on Facebook for sales a bot is going to help them stay ‘online’ 24/7.
×