The evolution of artificial intelligence is now in full swing and chatbots are only a faint splash on a huge wave of progress. Today the number of users of messaging apps like WhatsApp, Slack, Skype and their analogs is skyrocketing, Facebook Messenger alone has more than 1.2 billion monthly users. With the spread of messengers, virtual chatterbots that imitate human conversations for solving various tasks are becoming increasingly in demand. Chinese WeChat bots can already set medical appointments, call a taxi, send money to friends, check in for a flight and many many other.
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.

Of course, it is not so simple to create an interactive agent that the user will really trust. That’s why IM bots have not replaced all the couriers, doctors and the author of these lines. In this article, instead of talking about the future of chatbots, we will give you a short excursion into the topic of chatbots, how they work, how they can be employed and how difficult it is to create one yourself.


Chatbots talk in almost every major language. Their language (Natural Language Processing, NLP) skills vary from extremely poor to very clever intelligent, helpful and funny. The same counts for their graphic design, sometimes it feels like a cartoonish character drawn by a child, and on the other hand there are photo-realistic 3D animated characters available, which are hard to distinguish from humans. And they are all referred to as ‘chatbots’. If you have a look at our chatbot gallery, you will immediately notice the difference.
Chatbot Eliza can be regarded as the ancestor and grandmother of the large chatbot family we have listed on our website. As you can see in our directory tab, there are hundreds of online chatbots available in the public domain, although we believe hundreds of thousands have been created by enthusiastic artificial intelligence amateurs on platforms such as Pandorabots, MyCyberTwin or Personality Forge AI. Most of these chatbots give similar responses, the default response, and it appears to take a long time and patience to train a chatbot in another field of expertise and not all amateur developers are willing to spend these vast amounts of time. Most of the chatbots created this way are no longer accessible. Only a small portion of fanatic botmasters manage to fight their way out of the crowd and get some visibility in the public domain.
This is where most applications of NLP struggle, and not just chatbots. Any system or application that relies upon a machine’s ability to parse human speech is likely to struggle with the complexities inherent in elements of speech such as metaphors and similes. Despite these considerable limitations, chatbots are becoming increasingly sophisticated, responsive, and more “natural.”
The use of digital assistants is on the rise and more people are taking to chatbots as a first point-of-contact with businesses. While chatbots have traditionally supported customer service departments, more businesses are now using them to automate marketing and sales efforts. For a simple entry point into the chatbot world, look no further than Facebook Messenger.
NBC Politics Bot allowed users to engage with the conversational agent via Facebook to identify breaking news topics that would be of interest to the network’s various audience demographics. After beginning the initial interaction, the bot provided users with customized news results (prioritizing video content, a move that undoubtedly made Facebook happy) based on their preferences.

Pop-culture references to Skynet and a forthcoming “war against the machines” are perhaps a little too common in articles about AI (including this one and Larry’s post about Google’s RankBrain tech), but they do raise somewhat uncomfortable questions about the unexpected side of developing increasingly sophisticated AI constructs – including seemingly harmless chatbots.

Ideally used for customer service functions Botsify is another Facebook Messenger Bot Builder tool that can help boost your brand. A noteworthy feature would be its website integration (helping you get more cross-platform support out of your chatbot. Like other platforms we discussed so far Botsify also has an easy drag-and-drop template designer. Also, it is trusted by names including Apple and Shazam.
Marketer’s Take: This is a good demonstration of how you can add a gaming dimension to your bots. If you’re a marketer that likes to tell stories, then you can design a choose-your-own adventure bot that educates and sells prospective customers that are following along. There are many twists and turns that can be built into a bot like this, so creative marketers will readily take advantage.

In one particularly striking example of how this rather limited bot has made a major impact, U-Report sent a poll to users in Liberia about whether teachers were coercing students into sex in exchange for better grades. Approximately 86% of the 13,000 Liberian children U-Report polled responded that their teachers were engaged in this despicable practice, which resulted in a collaborative project between UNICEF and Liberia’s Minister of Education to put an end to it.


The main challenge is in teaching a chatbot to understand the language of your customers. In every business, customers express themselves differently and each group of a target audience speaks its own way. The language is influenced by advertising campaigns on the market, the political situation in the country, releases of new services and products from Google, Apple and Pepsi among others. The way people speak depends on their city, mood, weather and moon phase. An important role in the communication of the business with customers may have the release of the film Star Wars, for example. That’s why training a chatbot to understand correctly everything the user types requires a lot of efforts.
Human touch. Chatbots, providing an interface similar to human-to-human interaction, are more intuitive and so less difficult to use than a standard banking mobile application. They doesn't require any additional software installation and are more adaptive as able to be personalized during the exploitation by the means of machine learning. Chatbots are instant and so much faster that phone calls, shown to be considered as tedious in some studies. Then they satisfy both speed and personalization requirement while interacting with a bank.
This is an enterprise-level, fully-managed bot provider, meaning you tell them what you want and they’ll build it for you. Their clients include top brands in range of industries, but especially in retail and CPG (consumer packaged goods) companies. This is probably because their chatbots can catalog and host a view of products within the chat itself, making it a favorite of beauty companies like Vichy, Covergirl and L’Oreal. Automat also integrates with Hootsuite Inbox using the Facebook Messenger handover protocol.
×