Chatbots are used in a diverse fashion, across all verticals and on many different types of channel, e.g. websites, social messaging, etc. In business their application accelerated rapidly in 2019, leading Van Baker, research vice president at Gartner, to predict that: “By 2020, over 50% of medium to large enterprises will have deployed product chatbots."[17]
24/7 digital support. An instant and always accessible assistant is assumed by the more and more digital consumer of the new era.[36] Unlike humans, chatbots once developed and installed don't have a limited workdays, holidays or weekends and are ready to attend queries at any hour of the day. It helps to the customer to avoid waiting of a company's agent to be available. Thus, the customer doesn't have to wait for the company executive to help them. This also lets companies keep an eye on the traffic during the non-working hours and reach out to them later.[43]

The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[49] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform [50][30] and IBM Watson.[51][52][53] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
There are two types of chatbots available: those that function based on rules and those that use artificial intelligence (A.I.). Chatbots that function based on rules are much more limited than those that work with A.I. because they only respond to specific commands. Hence, they require a great deal of programming in order to be an effective tool. Chatbots tools that are powered by artificial intelligence are more dynamic because they respond to language, and don’t require specific commands. They learn continuously from the conversations they have with people and can help fulfill an array of tasks without a monumental amount of programming.
The word bot, in Internet sense, is a short form of robot and originates from XX century. The modern use of the word bot has curious affinities with earlier uses, e.g. “parasitical worm or maggot” (1520s), of unknown origin; and Australian-New Zealand slang “worthless, troublesome person” (World War I -era). The method of minting new slang by clipping the heads off respectable words does not seem to be old or widespread in English. Examples: za from pizza, zels from pretzels, rents from parents, are American English student or teen slang and seem to date back no further than late 1960s.[4]
Marketer’s Take: The bot was surprisingly effective yet fell short several times when queries like “Show me Blue Jeans” came with a canned bot response, “Sorry, I didn't find any products for this criteria.” Yet I know they sell “blue jeans”. Still, the bot was one of the best eCommerce bots I’ve seen on the platform thus far, and marketers should study it.
Several studies accomplished by analytics agencies such as Juniper or Gartner [36] report significant reduction of cost of customer services, leading to billions of dollars of economy in the next 10 years. Gartner predicts an integration by 2020 of chatbots in at least 85% of all client's applications to customer service. Juniper's study announces an impressive amount of $8 billion retained annually by 2022 due to the use of chatbots.
The idea was to permit Tay to “learn” about the nuances of human conversation by monitoring and interacting with real people online. Unfortunately, it didn’t take long for Tay to figure out that Twitter is a towering garbage-fire of awfulness, which resulted in the Twitter bot claiming that “Hitler did nothing wrong,” using a wide range of colorful expletives, and encouraging casual drug use. While some of Tay’s tweets were “original,” in that Tay composed them itself, many were actually the result of the bot’s “repeat back to me” function, meaning users could literally make the poor bot say whatever disgusting remarks they wanted. 
Last, but not least coming in with the bot platform for business is FlowXO, which creates bots for Messenger, Slack, SMS, Telegraph and the web. This platform allows for creating various flexibility in bots by giving you the option to create a fully automated bot, human, or a hybrid of both. ChatBot expert Murray Newlands commented that "Where 10 years ago every company needed a website and five  years ago every company needed an app, now every company needs to embrace messaging with AI and chatbots."

Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.


Messenger Bots are created using the new Messenger API that allows a bot to send and receive messages. The Messenger Bots are essentially chat bots that you can talk to from the Messenger app. The conversations will of course be different than those you have with your Facebook friends. These bots are meant to help you get information for example you can ask the CNN bot to tell you give you the current headline news and it will fetch them for you.
×