Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.
This form of artificial intelligence was first developed by MIT Professor Joseph Weizenbaum in the 1960’s and named ELIZA. It wasn’t until 2011, when chatbots had a resurgence with the inception of WeChat in China. Customers could create chatbots on this platform and interact with one another seamlessly. In 2016, Facebook introduced its own chatbots which paved the way for this form of artificial intelligence to enter and interact with mainstream media consumption.
Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".

The term "ChatterBot" was originally coined by Michael Mauldin (creator of the first Verbot, Julia) in 1994 to describe these conversational programs.[3] Today, most chatbots are accessed via virtual assistants such as Google Assistant and Amazon Alexa, via messaging apps such as Facebook Messenger or WeChat, or via individual organizations' apps and websites.[4][5] Chatbots can be classified into usage categories such as conversational commerce (e-commerce via chat), analytics, communication, customer support, design, developer tools, education, entertainment, finance, food, games, health, HR, marketing, news, personal, productivity, shopping, social, sports, travel and utilities.[6]
In reality, such consumer expectations aren’t met, which thereby exposes a grey area for businesses to take advantage of. Statistically, 93% of businesses do not respond to consumer grievances within the first 5 minutes. This delayed response is directly responsible for a 400% decrease in lead generation. Over time this turns into a surmounting problem for both small and large organizations as they may be overwhelmed with customer grievances or may fail to maintain an online presence 24/7.

Marketer’s Take: This is a good demonstration of how you can add a gaming dimension to your bots. If you’re a marketer that likes to tell stories, then you can design a choose-your-own adventure bot that educates and sells prospective customers that are following along. There are many twists and turns that can be built into a bot like this, so creative marketers will readily take advantage.


Jabberwacky learns new responses and context based on real-time user interactions, rather than being driven from a static database. Some more recent chatbots also combine real-time learning with evolutionary algorithms that optimise their ability to communicate based on each conversation held. Still, there is currently no general purpose conversational artificial intelligence, and some software developers focus on the practical aspect, information retrieval.
Messenger bots might also be able to revolutionize customer support. Facebook has become a popular platform for brands to interact with their customers. Many times customers will take a complaint to a brand’s Facebook page and have it resolved over chat. A Messenger bot makes it easier for you to get help. The quality of the support will vary but for smaller business that rely on Facebook for sales a bot is going to help them stay ‘online’ 24/7.
×