Previous generations of chatbots were present on company websites, e.g. Ask Jenn from Alaska Airlines which debuted in 2008[29] or Expedia's virtual customer service agent which launched in 2011.[29][30] The newer generation of chatbots includes IBM Watson-powered "Rocky", introduced in February 2017 by the New York City-based e-commerce company Rare Carat to provide information to prospective diamond buyers.[31][32]


In a particularly alarming example of unexpected consequences, the bots soon began to devise their own language – in a sense. After being online for a short time, researchers discovered that their bots had begun to deviate significantly from pre-programmed conversational pathways and were responding to users (and each other) in an increasingly strange way, ultimately creating their own language without any human input.
Other companies explore ways they can use chatbots internally, for example for Customer Support, Human Resources, or even in Internet-of-Things (IoT) projects. Overstock.com, for one, has reportedly launched a chatbot named Mila to automate certain simple yet time-consuming processes when requesting for a sick leave.[33] Other large companies such as Lloyds Banking Group, Royal Bank of Scotland, Renault and Citroën are now using automated online assistants instead of call centres with humans to provide a first point of contact. A SaaS chatbot business ecosystem has been steadily growing since the F8 Conference when Facebook's Mark Zuckerberg unveiled that Messenger would allow chatbots into the app.[34] In large companies, like in hospitals and aviation organizations, IT architects are designing reference architectures for Intelligent Chatbots that are used to unlock and share knowledge and experience in the organization more efficiently, and reduce the errors in answers from expert service desks significantly.[35] These Intelligent Chatbots make use of all kinds of artificial intelligence like image moderation and natural language understanding (NLU), natural language generation (NLG), machine learning and deep learning.
These days, checking the headlines over morning coffee is as much about figuring out if we should be hunkering down in the basement preparing for imminent nuclear annihilation as it is about keeping up with the day’s headlines. Unfortunately, even the most diligent newshounds may find it difficult to distinguish the signal from the noise, which is why NBC launched its NBC Politics Bot on Facebook Messenger shortly before the U.S. presidential election in 2016.

In one particularly striking example of how this rather limited bot has made a major impact, U-Report sent a poll to users in Liberia about whether teachers were coercing students into sex in exchange for better grades. Approximately 86% of the 13,000 Liberian children U-Report polled responded that their teachers were engaged in this despicable practice, which resulted in a collaborative project between UNICEF and Liberia’s Minister of Education to put an end to it.
This form of artificial intelligence was first developed by MIT Professor Joseph Weizenbaum in the 1960’s and named ELIZA. It wasn’t until 2011, when chatbots had a resurgence with the inception of WeChat in China. Customers could create chatbots on this platform and interact with one another seamlessly. In 2016, Facebook introduced its own chatbots which paved the way for this form of artificial intelligence to enter and interact with mainstream media consumption.
Of course, it is not so simple to create an interactive agent that the user will really trust. That’s why IM bots have not replaced all the couriers, doctors and the author of these lines. In this article, instead of talking about the future of chatbots, we will give you a short excursion into the topic of chatbots, how they work, how they can be employed and how difficult it is to create one yourself.
To compliment the functionality of bots for Messenger, we're introducing another tool to facilitate more complex conversational experiences, leveraging our learnings with M. The wit.ai Bot Engine enables ongoing training of bots using sample conversations. This enables you to create conversational bots that can automatically chat with users. The wit.ai Bot Engine effectively turns natural language into structured data as a simple way to manage context and drive conversations based on your business or app's goals.

The main challenge is in teaching a chatbot to understand the language of your customers. In every business, customers express themselves differently and each group of a target audience speaks its own way. The language is influenced by advertising campaigns on the market, the political situation in the country, releases of new services and products from Google, Apple and Pepsi among others. The way people speak depends on their city, mood, weather and moon phase. An important role in the communication of the business with customers may have the release of the film Star Wars, for example. That’s why training a chatbot to understand correctly everything the user types requires a lot of efforts.
HealthTap helps you get answers for your health queries from physicians around the world, for free. You can browse through and read answers for similar queries as yours. Over 100,000 physicians with different specialities regularly review and post answers to the questions asked on HealthTap. So, the next time you’re down with headache after texting the entire night on Messenger, you know who to ping next.
At Facebook’s F8 Developers Conference, Messenger Bots were announced. These bots are being developed by media corporations and retailers alike and very quickly so which raises the question as to what a Messenger bot is and how it’s useful to so many different types of companies. Even more important to know is what these bots mean for the average user, whether or not they will always be safe or can they present a potential threat if they are developed by anyone with malicious intent. Here’s a the answer to all that and more.
×